Electrodiffusional ATP movement through the cystic fibrosis transmembrane conductance regulator.

نویسندگان

  • H F Cantiello
  • G R Jackson
  • C F Grosman
  • A G Prat
  • S C Borkan
  • Y Wang
  • I L Reisin
  • C R O'Riordan
  • D A Ausiello
چکیده

Expression of the cystic fibrosis transmembrane conductance regulator (CFTR), and of at least one other member of the ATP-binding cassette family of transport proteins, P-glycoprotein, is associated with the electrodiffusional movement of the nucleotide ATP. Evidence directly implicating CFTR expression with ATP channel activity, however, is still missing. Here it is reported that reconstitution into a lipid bilayer of highly purified CFTR of human epithelial origin enables the permeation of both Cl- and ATP. Similar to previously reported data for in vivo ATP current of CFTR-expressing cells, the reconstituted channels displayed competition between Cl- and ATP and had multiple conductance states in the presence of Cl- and ATP. Purified CFTR-mediated ATP currents were activated by protein kinase A and ATP (1 mM) from the "intracellular" side of the molecule and were inhibited by diphenylamine-2-carboxylate, glibenclamide, and anti-CFTR antibodies. The absence of CFTR-mediated electrodiffusional ATP movement may thus be a relevant component of the pleiotropic cystic fibrosis phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.

  Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...

متن کامل

P-192: The Study of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations and Polymorphisms in Iranian Patients with Mayer Rokitansky Kuster Hauser Syndrome

Background: Mayer - Rokitansky - Kuster - Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. Congenital anomaly of the female genital tract, estimated to occur in approximately 1 in every 5,000 females. It is caused by a failure of deve...

متن کامل

Molecular screening of R117H mutation in non caucasian cystic fibrosis patients in the north of Iran

Cystic fibrosis is an autosomal recessive disease caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator protein. These mutations that correlate with different phenotypes, vary in their frequency and distribution in different populations. In this study missense mutation R117H that associated with the different clinical symptoms wa...

متن کامل

Cystic fibrosis transmembrane conductance regulator (ABCC7) structure.

Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to ...

متن کامل

Cystic Fibrosis Transmembrane Conductance Regulator

Description The cystic fibrosis transmembrane regulator (CFTR) gene codes for the CFTR protein; a chloride channel protein that helps in the transportation of chloride ions and water molecules across the cell membranes of lungs, liver, pancreas, and skin. CFTR is a member of the ATP-binding cassette family of membrane transport proteins, but appears to be unique within this family by functionin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 274 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1998